8,479 research outputs found

    Removing micromelody from fundamental frequency contours

    Get PDF
    In this paper we describe a new method to diminish microprosodic components of fundamental frequency contours by applying weight functions linked to microprosodically classified phone combinations. For vowel segments in obstruent environments our algorithm outperforms standard smoothing algorithms like Moving-Average filtering, Savitzky-Golay filtering or MOMEL in diminishing F0 variations related to microprosodic factors while retaining significant differences related to macroprosody

    On the Finiteness Property for Rational Matrices

    Get PDF
    We analyze the periodicity of optimal long products of matrices. A set of matrices is said to have the finiteness property if the maximal rate of growth of long products of matrices taken from the set can be obtained by a periodic product. It was conjectured a decade ago that all finite sets of real matrices have the finiteness property. This conjecture, known as the ``finiteness conjecture", is now known to be false but no explicit counterexample to the conjecture is available and in particular it is unclear if a counterexample is possible whose matrices have rational or binary entries. In this paper, we prove that finite sets of nonnegative rational matrices have the finiteness property if and only if \emph{pairs} of \emph{binary} matrices do. We also show that all {pairs} of 2×22 \times 2 binary matrices have the finiteness property. These results have direct implications for the stability problem for sets of matrices. Stability is algorithmically decidable for sets of matrices that have the finiteness property and so it follows from our results that if all pairs of binary matrices have the finiteness property then stability is decidable for sets of nonnegative rational matrices. This would be in sharp contrast with the fact that the related problem of boundedness is known to be undecidable for sets of nonnegative rational matrices.Comment: 12 pages, 1 figur

    Observable Graphs

    Full text link
    An edge-colored directed graph is \emph{observable} if an agent that moves along its edges is able to determine his position in the graph after a sufficiently long observation of the edge colors. When the agent is able to determine his position only from time to time, the graph is said to be \emph{partly observable}. Observability in graphs is desirable in situations where autonomous agents are moving on a network and one wants to localize them (or the agent wants to localize himself) with limited information. In this paper, we completely characterize observable and partly observable graphs and show how these concepts relate to observable discrete event systems and to local automata. Based on these characterizations, we provide polynomial time algorithms to decide observability, to decide partial observability, and to compute the minimal number of observations necessary for finding the position of an agent. In particular we prove that in the worst case this minimal number of observations increases quadratically with the number of nodes in the graph. From this it follows that it may be necessary for an agent to pass through the same node several times before he is finally able to determine his position in the graph. We then consider the more difficult question of assigning colors to a graph so as to make it observable and we prove that two different versions of this problem are NP-complete.Comment: 15 pages, 8 figure

    On the complexity of computing the capacity of codes that avoid forbidden difference patterns

    Full text link
    We consider questions related to the computation of the capacity of codes that avoid forbidden difference patterns. The maximal number of nn-bit sequences whose pairwise differences do not contain some given forbidden difference patterns increases exponentially with nn. The exponent is the capacity of the forbidden patterns, which is given by the logarithm of the joint spectral radius of a set of matrices constructed from the forbidden difference patterns. We provide a new family of bounds that allows for the approximation, in exponential time, of the capacity with arbitrary high degree of accuracy. We also provide a polynomial time algorithm for the problem of determining if the capacity of a set is positive, but we prove that the same problem becomes NP-hard when the sets of forbidden patterns are defined over an extended set of symbols. Finally, we prove the existence of extremal norms for the sets of matrices arising in the capacity computation. This result makes it possible to apply a specific (even though non polynomial) approximation algorithm. We illustrate this fact by computing exactly the capacity of codes that were only known approximately.Comment: 7 pages. Submitted to IEEE Trans. on Information Theor

    On Primitivity of Sets of Matrices

    Full text link
    A nonnegative matrix AA is called primitive if AkA^k is positive for some integer k>0k>0. A generalization of this concept to finite sets of matrices is as follows: a set of matrices M={A1,A2,,Am}\mathcal M = \{A_1, A_2, \ldots, A_m \} is primitive if Ai1Ai2AikA_{i_1} A_{i_2} \ldots A_{i_k} is positive for some indices i1,i2,...,iki_1, i_2, ..., i_k. The concept of primitive sets of matrices comes up in a number of problems within the study of discrete-time switched systems. In this paper, we analyze the computational complexity of deciding if a given set of matrices is primitive and we derive bounds on the length of the shortest positive product. We show that while primitivity is algorithmically decidable, unless P=NPP=NP it is not possible to decide primitivity of a matrix set in polynomial time. Moreover, we show that the length of the shortest positive sequence can be superpolynomial in the dimension of the matrices. On the other hand, defining P{\mathcal P} to be the set of matrices with no zero rows or columns, we give a simple combinatorial proof of a previously-known characterization of primitivity for matrices in P{\mathcal P} which can be tested in polynomial time. This latter observation is related to the well-known 1964 conjecture of Cerny on synchronizing automata; in fact, any bound on the minimal length of a synchronizing word for synchronizing automata immediately translates into a bound on the length of the shortest positive product of a primitive set of matrices in P{\mathcal P}. In particular, any primitive set of n×nn \times n matrices in P{\mathcal P} has a positive product of length O(n3)O(n^3)

    Cosmology and the S-matrix

    Full text link
    We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.Comment: 16 pages, 5 figures; v2: minor editin
    corecore